Species: | Rabbit |
Applications: | WB IHC IF |
Immunogen Range: | KLH conjugated synthetic peptide derived from human GABABR1 |
Clonality: | Polyclonal Antibody |
Isotype: | IgG |
GENE ID: | 2550 |
Swiss Prot: | Q9UBS5 |
Synonyms: | GB1, GPRC3A, GABABR1, GABBR1-3, dJ271M21.1.1, dJ271M21.1.2, Gamma-aminobutyric acid type B receptor subunit 1, GABA-B receptor 1, GABA-B-R1, GABA-BR1, GABBR1 |
Purification: | Purified by Protein A. |
Storage: | Aqueous buffered solution containing 100ug/ml BSA, 50% glycerol and 0.09% sodium azide. Store at -20℃ for 12 months |
Background: | Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis. Calcium is required for high affinity binding to GABA. Plays a critical role in the fine-tuning of inhibitory synaptic transmission. Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception. Activated by (-)-baclofen, cgp27492 and blocked by phaclofen. Isoform 1E may regulate the formation of functional GABBR1/GABBR2 heterodimers by competing for GABBR2 binding. This could explain the observation that certain small molecule ligands exhibit differential affinity for central versus peripheral sites. |
Caculated MW: | / |
Observed MW: | Refer to Figures |
Applications: |
WB 1:100-1:1000 IHC 1:100-1:500 IF 1:50-1:200 |
Reacitivity: | Human, Mouse, Rat |