ARM8359A-21 [Monoclonal Antibody]
Acetyl-HIST1H4A-Lys5 Rabbit Monoclonal Antibody
www.yhsbio.com
market@yhsbio.com
support@yhsbio.com
+86-21-54651191
Room 703,Building 6,333# Guiping
Rd.,Xuhui District,Shanghai,China
DATASHEET
Species:   Rabbit
Applications:   WB IHC IP IF ChIP
Immunogen Range:   A synthetic peptide corresponding to residues surrounding acetylated Lys5 of human histone H4 protein
Clonality:   Monoclonal Antibody
Isotype:   IgG
GENE ID:   8359
Swiss Prot:   P62805
Synonyms:   FO108, H4, H4/n, H4F2, H4FN, HIST2H4
Purification:   Affinity purification
Storage:   Store at -20°C in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Avoid freeze/thaw cycles.
Background:   The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). Histone acetylation occurs mainly on the amino-terminal tail domains of histones H2A (Lys5), H2B (Lys5, 12, 15, and 20), H3 (Lys9, 14, 18, 23, 27, 36 and 56), and H4 (Lys5, 8, 12, and 16) and is important for the regulation of histone deposition, transcriptional activation, DNA replication, recombination, and DNA repair (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the accessibility of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites for a protein module called the bromodomain, which binds to acetylated lysine residues (6). Many transcription and chromatin regulatory proteins contain bromodomains and may be recruited to gene promoters, in part, through binding of acetylated histone tails. Histone acetylation is mediated by histone acetyltransferases (HATs), such as CBP/p300, GCN5L2, PCAF, and Tip60, which are recruited to genes by DNA-bound protein factors to facilitate transcriptional activation (3). Deacetylation, which is mediated by histone deacetylases (HDAC and sirtuin proteins), reverses the effects of acetylation and generally facilitates transcriptional repression (7,8).
Caculated MW:   11 kDa
Observed MW:   Refer to Figures
Applications:   WB 1:1000
IHC 1:6400
IF 1:100
ChIP 1:25
Dot 1:25
Reacitivity:   Human, Monkey, Mouse, Rat
For research use only. Not intended for diagnostic or therapeutic use!
Additional information