Species: | Rabbit |
Applications: | WB IHC IF |
Immunogen Range: | KLH conjugated synthetic peptide derived from human GABARE/GABA Receptor Epsilon |
Clonality: | Polyclonal Antibody |
Isotype: | IgG |
GENE ID: | |
Swiss Prot: | |
Synonyms: | GABAA receptor epsilon, GABAA receptor subunit epsilon, Gabre, Gamma aminobutyric acid GABA A receptor epsilon, Gamma aminobutyric acid receptor subunit epsilon, Gamma-aminobutyric acid receptor subunit epsilon, GBRE_HUMAN. |
Purification: | Purified by Protein A. |
Storage: | Aqueous buffered solution containing 100ug/ml BSA, 50% glycerol and 0.09% sodium azide. Store at -20℃ for 12 months |
Background: | GAD-65 and GAD-67, glutamate decarboxylases, function to catalyze the production of GABA (gamma-aminobutyric acid). In the central nervous system GABA functions as the main inhibitory transmitter by increasing a Cl- conductance that inhibits neuronal firing. GABA has been shown to activate both ionotropic (GABAA) and metabotropic (GABAB) receptors as well as a third class of receptors called GABAC. Both GABAA and GABAC are ligand-gated ion channels, however, they are structurally and functionally distinct. Members of the GABAA receptor family include GABAA R Alpha 1-6, GABAA R Beta 1-3, GABAA R Gamma 1-3, GABAA R Delta, GABAA R Epsilon, GABAA R Zeta 1 and GABAA R Zeta 2. The GABAB family is composed of GABAB R1 Alpha and GABAB R1 Beta. GABA transporters have also been identified and include GABA T-1, GABA T-2 and GABA T-3 (also designated GAT-1, -2, and -3). The GABA transporters function to terminate GABA action. |
Caculated MW: | / |
Observed MW: | Refer to Figures |
Applications: |
WB 1:100-1:1000 IHC 1:100-1:500 IF 1:50-1:200 |
Reacitivity: | Human, Mouse, Rat |